Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Circ Res ; 133(12): 1040-1055, 2023 12 08.
Article En | MEDLINE | ID: mdl-37961889

BACKGROUND: Nitric oxide (NO) has been identified as a signaling molecule generated during ß-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during ß-adrenergic receptor stimulation. METHODS: We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 µM), sodium nitroprusside (200 µM), and ß-adrenergic agonist isoproterenol (100 nmol/L). RESULTS: Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS: We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent ß-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain ß-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.


Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Nitric Oxide , Mice , Animals , Isoproterenol/pharmacology , Nitric Oxide/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cysteine/metabolism , Mice, Inbred C57BL , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Receptors, Adrenergic, beta/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum/metabolism
2.
Cardiovasc Diabetol ; 22(1): 276, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833717

BACKGROUND: O-GlcNAcylation is the enzymatic addition of a sugar, O-linked ß-N-Acetylglucosamine, to the serine and threonine residues of proteins, and is abundant in diabetic conditions. We have previously shown that O-GlcNAcylation can trigger arrhythmias by indirectly increasing pathological Ca2+ leak through the cardiac ryanodine receptor (RyR2) via Ca2+/calmodulin-dependent kinase II (CaMKII). However, RyR2 is well known to be directly regulated by other forms of serine and threonine modification, therefore, this study aimed to determine whether RyR2 is directly modified by O-GlcNAcylation and if this also alters the function of RyR2 and Ca2+ leak. METHODS: O-GlcNAcylation of RyR2 in diabetic human and animal hearts was determined using western blotting. O-GlcNAcylation of RyR2 was pharmacologically controlled and the propensity for Ca2+ leak was determined using single cell imaging. The site of O-GlcNAcylation within RyR2 was determined using site-directed mutagenesis of RyR2. RESULTS: We found that RyR2 is modified by O-GlcNAcylation in human, animal and HEK293 cell models. Under hyperglycaemic conditions O-GlcNAcylation was associated with an increase in Ca2+ leak through RyR2 which persisted after CaMKII inhibition. Conversion of serine-2808 to alanine prevented an O-GlcNAcylation induced increase in Ca2+ leak. CONCLUSIONS: These data suggest that the function of RyR2 can be directly regulated by O-GlcNAcylation and requires the presence of serine-2808.


Diabetes Mellitus , Ryanodine Receptor Calcium Release Channel , Animals , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Myocytes, Cardiac/metabolism , HEK293 Cells , Phosphorylation/physiology , Sarcoplasmic Reticulum/metabolism , Diabetes Mellitus/metabolism , Serine/metabolism , Threonine/metabolism , Calcium/metabolism
3.
bioRxiv ; 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37662205

Rationale: Nitric oxide (NO) has been identified as a signalling molecule generated during ß-adrenergic receptor (AR) stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of Ca2+/calmodulin kinase II delta (CaMKIIδ) is emerging. NO donors are routinely used clinically for their cardioprotective effects in the heart, but it is unknown how NO donors modulate the pro-arrhythmic CaMKII to alter cardiac arrhythmia incidence. Objective: We test the role of S-nitrosylation of CaMKIIδ at the Cys-273 inhibitory site and Cys-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during ß-AR stimulation. Methods and Results: We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at Cys-273 or Cys-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 µM), sodium nitroprusside (SNP; 200 µM) and/or ß-adrenergic agonist isoproterenol (ISO; 100 nM). WT and CaMKIIδ-KO cardiomyocytes treated with GSNO showed no change in Ca2+ transient or spark properties under baseline conditions (0.5 Hz stimulation frequency). Both WT and CaMKIIδ-KO cardiomyocytes responded to ISO with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from ISO-induced Ca2+ sparks and waves was mimicked by GSNO pre-treatment in WT cardiomyocytes, but lost in CaMKIIδ-C273S cardiomyocytes that displayed a robust increase in Ca2+ waves. This observation is consistent with CaMKIIδ-C273 S-nitrosylation being critical in limiting ISO-induced arrhythmogenic sarcoplasmic reticulum Ca2+ leak. When GSNO was applied after ISO this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pre-treatment limited ISO-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after ISO sustained or exacerbated arrhythmic events. Conclusions: We conclude that prior S-nitrosylation of CaMKIIδ at Cys-273 can limit subsequent ß-AR induced arrhythmias, but that S-nitrosylation at Cys-290 might worsen or sustain ß-AR-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.

4.
Cardiovasc Res ; 118(1): 212-225, 2022 01 07.
Article En | MEDLINE | ID: mdl-33576380

AIMS: The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, ß-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS: In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION: Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.


Antigens, Neoplasm/metabolism , Diabetic Cardiomyopathies/enzymology , Histone Acetyltransferases/metabolism , Hyaluronoglucosaminidase/metabolism , Myocytes, Cardiac/enzymology , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational , Ventricular Dysfunction, Left/enzymology , Ventricular Function, Left , Ventricular Remodeling , Aged , Animals , Antigens, Neoplasm/genetics , Cell Line , Class I Phosphatidylinositol 3-Kinases/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Female , Fibrosis , Gene Expression Regulation , Glycosylation , Histone Acetyltransferases/genetics , Humans , Hyaluronoglucosaminidase/genetics , Male , Mice , Middle Aged , Myocytes, Cardiac/pathology , N-Acetylglucosaminyltransferases/genetics , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
5.
Cardiovasc Diabetol ; 17(1): 89, 2018 06 14.
Article En | MEDLINE | ID: mdl-29903013

BACKGROUND: Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS: We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS: CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS: Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.


Benzylamines/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/drug therapy , Myocardial Contraction/drug effects , Myocardium/enzymology , Peptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology , Aged , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Female , Humans , Male , Middle Aged , Phosphorylation , Rats, Zucker
6.
Protein Sci ; 27(3): 750-768, 2018 03.
Article En | MEDLINE | ID: mdl-29271062

The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.


Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Amino Acid Substitution , Alcohol Dehydrogenase/genetics , Amino Acid Motifs , Animals , Catalysis , Catalytic Domain , Crystallography, X-Ray , Horses , Kinetics , Models, Molecular , Protein Conformation
7.
Science ; 330(6012): 1816-20, 2010 Dec 24.
Article En | MEDLINE | ID: mdl-21205667

Activation of the complement cascade induces inflammatory responses and marks cells for immune clearance. In the central complement-amplification step, a complex consisting of surface-bound C3b and factor B is cleaved by factor D to generate active convertases on targeted surfaces. We present crystal structures of the pro-convertase C3bB at 4 angstrom resolution and its complex with factor D at 3.5 angstrom resolution. Our data show how factor B binding to C3b forms an open "activation" state of C3bB. Factor D specifically binds the open conformation of factor B through a site distant from the catalytic center and is activated by the substrate, which displaces factor D's self-inhibitory loop. This concerted proteolytic mechanism, which is cofactor-dependent and substrate-induced, restricts complement amplification to C3b-tagged target cells.


Complement C3 Convertase, Alternative Pathway/chemistry , Complement C3b/chemistry , Complement Factor B/chemistry , Complement Factor D/chemistry , Binding Sites , Catalytic Domain , Complement C3 Convertase, Alternative Pathway/metabolism , Complement C3b/metabolism , Complement Factor B/metabolism , Complement Factor D/metabolism , Complement Pathway, Alternative , Crystallography, X-Ray , Humans , Models, Molecular , Mutant Proteins/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary
...